CRUSH SCHOOL

I blog on Brain-Based Learning, Metacognition, EdTech, and Social-Emotional Learning. I am the author of the Crush School Series of Books, which help students understand how their brains process information and learn. I also wrote The Power of Three: How to Simplify Your Life to Amplify Your Personal and Professional Success, but be warned that it's meant for adults who want to thrive and are comfortable with four letter words.

Beginning the School Year with NGSS and Phenomenon-Based Learning

The start of a new school year is an opportunity for a science teacher to engage students in science learning that is both fun and effective. Combining the Next Generation Science Standards (NGSS) with phenomenon-based learning (PhenBL) in the right way can create a lively classroom environment where students develop a deep understanding of scientific concepts through real-world explorations.

Here’s how to make it fun and effective.

NGSS and Phenomenon-Based Learning

NGSS focuses on three dimensions: disciplinary core ideas (DCIs), science and engineering practices (SEPs), and crosscutting concepts (CCCs). These standards encourage students to think and work like scientists and engineers, emphasizing inquiry, evidence-based reasoning, and the interconnectedness of scientific concepts.

Phenomenon-based learning involves using observable events or phenomena to anchor learning. Students investigate these phenomena through questioning, experimentation, and critical thinking, leading to a deeper and more relevant understanding of scientific principles.

Steps to Implement NGSS and Phenomenon Based Learning

1. Identify Compelling Phenomena

Start by selecting phenomena that are engaging, relatable, and aligned with the NGSS. Effective phenomena are those that naturally spark curiosity and connect to students’ lives. For instance, exploring why leaves change color in the fall or investigating the effects of plastic pollution on marine life can be excellent starting points.

2. Develop Driving Questions

Formulate open-ended driving questions that guide the inquiry process. These questions should be broad enough to allow for exploration but specific enough to maintain focus. Examples include, “How do plants adapt to different environments?” or “What causes extreme weather events?”

3. Design Coherent Learning Experiences

Plan a series of interconnected lessons and activities that allow students to explore the driving questions. Utilize a mix of hands-on experiments, collaborative projects, and technology-enhanced investigations. Ensure that these experiences integrate the three dimensions of NGSS, promoting a holistic understanding of the content.

4. Encourage Student-Led Inquiry

Empower students to take ownership of their learning by encouraging them to ask questions, design experiments, and present their findings. Facilitate a classroom environment where students feel comfortable taking risks, making mistakes, and learning from them. Provide scaffolding and support as needed, but allow students the freedom to explore and discover.

5. Use Formative Assessments

Incorporate ongoing formative assessments to gauge student understanding and adjust instruction accordingly. Use a variety of assessment methods, such as observations, discussions, quizzes, and student reflections. This approach helps identify misconceptions early and provides opportunities for timely feedback and intervention.

6. Foster a Collaborative Classroom Culture

Create a classroom culture that values collaboration, communication, and respect. Encourage students to work together, share ideas, and construct knowledge collectively. Group work, peer reviews, and class discussions are essential components of a collaborative learning environment.

Check out this classroom poster on collaboration.

7. Reflect and Iterate

At the end of each unit or project, take time to reflect with your students on what worked well and what could be improved. Use this feedback to refine your approach and enhance future learning experiences. Continuous reflection and iteration are key to the successful implementation of NGSS and PBL.

Embrace Phenomena and Watch Your Students Grow

Implementing NGSS with phenomenon-based learning sets the stage for an engaging and effective science classroom. When teachers use interesting phenomena and foster collaborative inquiry into these phenomena, students develop a deeper understanding of concepts and a passion for learning. PhenBL is challenging, exciting, and… a lot of work, but if you embrace this approach, you will see your students thrive and become curious, capable, and confident young scientists.


If you’d like some help getting started with Phenomena-Based Learning in Earth Science, check out the Intro Unit of Study I created and will start using in less than two weeks time. Yikes!

It contains 5 PhenBL Student Projects, will last about 3 weeks, and is on sale through Labor Day.

Introduction to Earth and Space Science - 5 Phenomenon-Based Projects
Sale Price:$20.00 Original Price:$25.00
Add To Cart

BOOKS & TOOLS

EQUITY Poster
$3.00
Add To Cart
Introduction to Earth and Space Science - 5 Phenomenon-Based Projects
Sale Price:$20.00 Original Price:$25.00
Add To Cart
Back 2 School Classroom Bundle of 8 Posters
Sale Price:$8.00 Original Price:$16.00

2024 Crush School